Conjugate Gradient

This example evaluates the performance of Conjugate Gradient (CG) with a sparse matrix A built by 7-point stencil. The kernel records the start and end of CG by tsc counter. In addition the tsc counters of all PEs are not synchronized in the beginning. To avoid the timing variation among those PEs, sync() synchronizes all PEs and samples the reference clock.

There are two implementations, kernel.csl and kernel_cg.csl compiled by run.py and run_cg.py respectively. Both kernels define host-callable functions f_sync(), f_tic() and f_toc() in order to synchronize the PEs and record the timing.

The kernel kernel.csl also defines a couple of host-callable functions to implement CG algorithm, including

  • spmv(): compute A*x and A*p

  • dot(): compute dot(p,w) and dot(r,r)

  • others: update x, p, r

The kernel kernel_cg.csl defines a host-callable function f_cg which implements the CG on the WSE. The f_cg introduces a state machine to call a sequence of spmv(), dot() and others. Such state machine simply realizes the algorithm in run.py.

The kernel allreduce/pe.csl performs a reduction over the whole rectangle to synchronize the PEs, then the bottom-right PE sends a signal to other PEs to sample the reference clock.

The kernel stencil_3d_7pts/pe.csl performs a matrix-vector product (spmv) where the matrix has 7 diagonals corresponding to 7 point stencil. The stencil coefficients can vary per PE, but must be the same for the local vector. The user can change the coefficients based on the boundary condition or curvilinear coordinate transformation.

The script run.py or run_cg.py has the following parameters:

  • -k=<int> specifies the maximum size of local vector.

  • --zDim=<int> specifies how many elements per PE are computed.

  • --max-ite=<int> specifies number of iterations in power method.

  • --channels=<int> specifies the number of I/O channels, no bigger than 16.

The tic() samples “time_start” and toc() samples “time_end”. The sync() samples “time_ref” which is used to adjust “time_start” and “time_end”. The elapsed time (unit: cycles) is measured by cycles_send = max(time_end) - min(time_start)

The overall runtime (us) is computed via the following formula time_send = (cycles_send / 0.85) * 1.e-3 us

Note that the allreduce and stencil_3d_7pts modules used in this code are identical to those used in stencil-3d-7pts.

layout.csl

// color map: memcpy + allreduce + stencil
//
// color  var   color  var        color  var              color  var
//   0   C0       9                18    EN_REDUCE_2       27   reserved (memcpy)
//   1   C1      10  LAUNCH        19    EN_REDUCE_3       28   reserved (memcpy)
//   2   C2      11                20    EN_REDUCE_4       29   reserved (memcpy)
//   3   C3      12                21    reserved (memcpy) 30   reserved (memcpy)
//   4   C4      13                22    reserved (memcpy) 31   reserved
//   5   C5      14  EN_STENCIL_1  23    reserved (memcpy) 32
//   6   C6      15  EN_STENCIL_2  24                      33
//   7   C7      16  EN_STENCIL_3  25                      34
//   8   C8      17  EN_REDUCE_1   26                      35
//

param LAUNCH_ID: i16;

// c0,c1,c2,c3,c4,c5,c6,c7 are internal colors of 7-point stencil
param C0_ID: i16;
param C1_ID: i16;
param C2_ID: i16;
param C3_ID: i16;
param C4_ID: i16;
param C5_ID: i16;
param C6_ID: i16;
param C7_ID: i16;
// c8 is an internal color of allreduce
param C8_ID: i16;

param MAX_ZDIM: i16; // maximum size of local vector x and y
param width: i16 ; // width of the core
param height: i16 ; // height of the core

param BLOCK_SIZE: i16; // size of temporary buffers for communication

const LAUNCH: color = @get_color(LAUNCH_ID);

const C0: color = @get_color(C0_ID);
const C1: color = @get_color(C1_ID);
const C2: color = @get_color(C2_ID);
const C3: color = @get_color(C3_ID);
const C4: color = @get_color(C4_ID);
const C5: color = @get_color(C5_ID);
const C6: color = @get_color(C6_ID);
const C7: color = @get_color(C7_ID);
const C8: color = @get_color(C8_ID);

// entrypoints of 7-point stenil
const EN_STENCIL_1: color = @get_color(14);
const EN_STENCIL_2: color = @get_color(15);
const EN_STENCIL_3: color = @get_color(16);

// entrypoints of allreduce
const EN_REDUCE_1: color = @get_color(17);
const EN_REDUCE_2: color = @get_color(18);
const EN_REDUCE_3: color = @get_color(19);
const EN_REDUCE_4: color = @get_color(20);

const stencil = @import_module( "stencil_3d_7pts/layout.csl", .{
    .colors = [8]color{C0, C1, C2, C3, C4, C5, C6, C7},
    .entrypoints = [3]color{EN_STENCIL_1, EN_STENCIL_2, EN_STENCIL_3},
    .width = width,
    .height = height
    });

const reduce = @import_module( "allreduce/layout.csl", .{
    .colors = [1]color{C8},
    .entrypoints = [4]color{EN_REDUCE_1, EN_REDUCE_2, EN_REDUCE_3, EN_REDUCE_4},
    .width = width,
    .height = height
    });

const memcpy = @import_module( "<memcpy_multi/get_params>", .{
    .width = width,
    .height = height
    });

layout{

    @comptime_assert(C0_ID < C1_ID);
    @comptime_assert(C1_ID < C2_ID);
    @comptime_assert(C2_ID < C3_ID);
    @comptime_assert(C3_ID < C4_ID);
    @comptime_assert(C4_ID < C5_ID);
    @comptime_assert(C5_ID < C6_ID);
    @comptime_assert(C6_ID < C7_ID);
    @comptime_assert(C7_ID < C8_ID);
    @comptime_assert(C8_ID < LAUNCH_ID);

    @comptime_assert(LAUNCH_ID < 14);

    // step 1: configure the rectangle which does not include halo
    @set_rectangle( width, height );

    // step 2: compile csl code for a set of PEx.y and generate out_x_y.elf
    //   format: @set_tile_code(x, y, code.csl, param_binding);

    var py: i16 = 0;
    while(py < height) : (py +=1) {
        var px: i16 = 0;
        while(px < width) : (px +=1) {

            const memcpyParams = memcpy.get_params(px);
            const stencilParams = stencil.get_params(px, py);
            const reduceParams = reduce.get_params(px, py);
            var params: comptime_struct = .{
                .memcpyParams = memcpyParams,
                .reduceParams = reduceParams,
                .LAUNCH = LAUNCH,
                .MAX_ZDIM = MAX_ZDIM,
                .BLOCK_SIZE = BLOCK_SIZE,
                .stencilParams = stencilParams
            };

            @set_tile_code(px, py, "kernel.csl", params);
        }
    }

    @export_name("b", [*]f32, true);
    @export_name("x", [*]f32, true);
    @export_name("stencil_coeff", [*]f32, true);
    @export_name("time_buf_u16", [*]u16, true);
    @export_name("time_ref", [*]u16, true);
    @export_name("rho", [*]f32, true);

    @export_name("f_enable_timer", fn()void);
    @export_name("f_tic", fn()void);
    @export_name("f_toc", fn()void);
    @export_name("f_memcpy_timestamps", fn()void);

    @export_name("f_cg_init", fn(i16)void);
    @export_name("f_spmv_Ax", fn()void);
    @export_name("f_residual", fn()void);
    @export_name("f_update_p", fn(i16)void);
    @export_name("f_spmv_Ap", fn()void);
    @export_name("f_eta", fn()void);
    @export_name("f_update_x_r_rho", fn()void);

    @export_name("f_sync", fn()void);
    @export_name("f_reference_timestamps", fn()void);
} // end of layout

kernel.csl

param memcpyParams: comptime_struct;

param reduceParams: comptime_struct;

param LAUNCH: color;

param stencilParams: comptime_struct;

param MAX_ZDIM: i16; // size of vector x

param BLOCK_SIZE: i16; // size of temporary buffers for communication

const timestamp = @import_module("<time>");

const math_lib = @import_module("<math>");

const blas_lib = @import_module("blas.csl");

// input/output queue ID = 0 is reserved for memcpy module
const sys_mod = @import_module( "<memcpy_multi/memcpy>", @concat_structs(memcpyParams, .{
     .LAUNCH = LAUNCH
      }));

// allreduce uses input queue/output queue 1
const reduce_mod = @import_module( "allreduce/pe.csl", @concat_structs(reduceParams, .{
     .f_callback = sys_mod.unblock_cmd_stream,
     .queues = [1]u16{1},
     .dest_dsr_ids = [1]u16{1},
     .src0_dsr_ids = [1]u16{1},
     .src1_dsr_ids = [1]u16{1}
     }));

// output queue cannot overlap input queues
const stencil_mod = @import_module( "stencil_3d_7pts/pe.csl", @concat_structs(stencilParams, .{
     .f_callback = sys_mod.unblock_cmd_stream,
     .input_queues = [4]u16{3, 4, 5, 6},
     .output_queues = [1]u16{2},
     .BLOCK_SIZE = BLOCK_SIZE,
     .dest_dsr_ids = [2]u16{2,3},
     .src0_dsr_ids = [1]u16{2},
     .src1_dsr_ids = [2]u16{2,3}
     }));


// tsc_size_words = 3
// starting time of H2D/D2H
var tscStartBuffer = @zeros([timestamp.tsc_size_words]u16);
// ending time of H2D/D2H
var tscEndBuffer = @zeros([timestamp.tsc_size_words]u16);


var b = @zeros([MAX_ZDIM]f32); // right-hand-side
var x = @zeros([MAX_ZDIM]f32); // approximated solution
var p = @zeros([MAX_ZDIM]f32); // Krylov space
var w = @zeros([MAX_ZDIM]f32); // w = A * p
var r = @zeros([MAX_ZDIM]f32); // residual

var dot = @zeros([1]f32); // dummy variable for f_sync
var rho = @zeros([1]f32);
var rho_old = @zeros([1]f32);
var eta = @zeros([1]f32);
var beta: f32 = @as(f32,0);

// stencil coefficients are organized as
// {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
//
// The formula is
//    c_west * x[i-1][j][k] + c_east * x[i+1][j][k] +
//    c_south * x[i][j-1][k] + c_north * x[i][j+1][k] +
//    c_bottom * x[i][j][k-1] + c_top * x[i][j][k+1] +
//    c_center * x[i][j][k]
var stencil_coeff = @zeros([7]f32);

// time_buf_u16[0:5] = {tscStartBuffer, tscEndBuffer}
var time_buf_u16 = @zeros([timestamp.tsc_size_words*2]u16);

// reference clock inside allreduce module
var time_ref_u16 = @zeros([timestamp.tsc_size_words]u16);

var ptr_b: [*]f32 = &b;
var ptr_x: [*]f32 = &x;
var ptr_stencil_coeff: [*]f32 = &stencil_coeff;
var ptr_time_buf_u16: [*]u16 = &time_buf_u16;
var ptr_time_ref: [*]u16 = &time_ref_u16;
var ptr_rho: [*]f32 = &rho;

// size of local tensor during the CG
var n: i16 = 0;

var mem_b_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> b[i] });
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> x[i] });
var mem_r_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r[i] });
var mem_p_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> p[i] });
var mem_w_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> w[i] });


fn f_enable_timer() void {
    timestamp.enable_tsc();
    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

fn f_tic() void {
    timestamp.get_timestamp(&tscStartBuffer);

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

fn f_toc() void {
    timestamp.get_timestamp(&tscEndBuffer);

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

fn f_memcpy_timestamps() void {

    time_buf_u16[0] = tscStartBuffer[0];
    time_buf_u16[1] = tscStartBuffer[1];
    time_buf_u16[2] = tscStartBuffer[2];

    time_buf_u16[3] = tscEndBuffer[0];
    time_buf_u16[4] = tscEndBuffer[1];
    time_buf_u16[5] = tscEndBuffer[2];

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

// initialization of CG
// - setup the length of all DSDs
// - setup the size of local tensor
//
fn f_cg_init(size:i16) void {

    // setup the size of local tensor
    n = size;

    // set the length of all DSDs
    mem_b_dsd = @set_dsd_length(mem_b_dsd, @bitcast(u16,n));
    mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
    mem_p_dsd = @set_dsd_length(mem_p_dsd, @bitcast(u16,n));
    mem_r_dsd = @set_dsd_length(mem_r_dsd, @bitcast(u16,n));
    mem_w_dsd = @set_dsd_length(mem_w_dsd, @bitcast(u16,n));

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}


// w = A*x
fn f_spmv_Ax() void {
    stencil_mod.spmv(n, &stencil_coeff, &x, &w);
}

// compute r = b - w and rho = |r|^2
// where w = A*x is computed by f_spmv_Ax
fn f_residual() void {

    @fsubs(mem_r_dsd, mem_b_dsd, mem_w_dsd);

    // compute <r, r> locally
    rho[0] = blas_lib.dot(n, &r, &r);

    // reduce(|r|^2)
    reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}

// if k is 1
//   p = r0
// else
//   beta = rho/rho_old
//   p = r + beta*p
// end
fn f_update_p(k:i16) void {
    if (1 == k){
        // p = r
        @fmovs(mem_p_dsd, mem_r_dsd);
    }else{
        // beta_{k} = |r_{k-1}|^2/|r_{k-2}|^2
        beta = rho[0]/rho_old[0];
        // p_{k} = r_{k-1} + beta_{k} * p_{k-1}
        @fmacs(mem_p_dsd, mem_r_dsd, mem_p_dsd, beta);
    }
    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

// w = A*p
fn f_spmv_Ap() void {
    stencil_mod.spmv(n, &stencil_coeff, &p, &w);
}

// eta = np.dot(p,w)
fn f_eta() void {
    // compute <w, p> locally
    eta[0] = blas_lib.dot(n, &w, &p);
    // reduce(<w,p>)
    reduce_mod.allreduce(1, &eta, reduce_mod.TYPE_BINARY_OP.ADD);
}

// update x, r and rho
// ---
// alpha = rho/eta
// x = x + alpha * p
// r = r - alpha * w where w = A*p
// rho_old = rho
// rho = np.dot(r,r)
// ---
//
// w must be computed by f_spmv_Ap()
// eta must be computed by f_eta()
//
fn f_update_x_r_rho() void {

    var alpha: f32 = rho[0]/eta[0];
    var alpha_minus: f32 = -alpha;

    // x_{k} = x_{k-1} + alpha_{k} * p_{k}
    // x = x + alpha * p
    @fmacs(mem_x_dsd, mem_x_dsd, mem_p_dsd, alpha);

    // r_{k} = r_{k-1} - alpha_{k} * A*p_{k}
    // r = r - alpha * w
    @fmacs(mem_r_dsd, mem_r_dsd, mem_w_dsd, alpha_minus);

    // update rho
    rho_old[0] = rho[0];

    // rho = np.dot(r,r)
    // compute <r, r> locally
    rho[0] = blas_lib.dot(n, &r, &r);
    // reduce(|r|^2)
    reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}


fn f_sync() void {
   reduce_mod.allreduce(1, &dot, reduce_mod.TYPE_BINARY_OP.ADD);
}

fn f_reference_timestamps() void {
    
    time_ref_u16[0] = reduce_mod.tscRefBuffer[0];
    time_ref_u16[1] = reduce_mod.tscRefBuffer[1];
    time_ref_u16[2] = reduce_mod.tscRefBuffer[2];

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

comptime {
    @export_symbol(ptr_b, "b");
    @export_symbol(ptr_x, "x");
    @export_symbol(ptr_stencil_coeff, "stencil_coeff");
    @export_symbol(ptr_time_buf_u16, "time_buf_u16");
    @export_symbol(ptr_time_ref, "time_ref");
    @export_symbol(ptr_rho, "rho");
}

comptime{
    @export_symbol(f_enable_timer);
    @export_symbol(f_tic);
    @export_symbol(f_toc);
    @export_symbol(f_memcpy_timestamps);

    @export_symbol(f_cg_init);
    @export_symbol(f_spmv_Ax);
    @export_symbol(f_residual);
    @export_symbol(f_update_p);
    @export_symbol(f_spmv_Ap);
    @export_symbol(f_eta);
    @export_symbol(f_update_x_r_rho);

    @export_symbol(f_sync);
    @export_symbol(f_reference_timestamps);

    @rpc(LAUNCH);
}

blas.csl

const math_lib = @import_module("<math>");

const dummy = @zeros([1]i16);

var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> dummy[i] });
var mem_y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> dummy[i] });




// (alpha, inv_alpha) = approx(x) approximates x by positive alpha such that
//     x = alpha * (x/alpha)
// where alpha = 2^(exp) and (x/alpha) has no precision loss.
//
// If x is a normal number, |x| = 2^(exp) * r, then alpha = 2^(exp)
//
// The purpose of this approximation is for nrm2(x).
// nrm2(x) can hit overflow if we just do square-sum.
// The simple workaround is to square-sum of x/max(x).
// However the division is very expensive, about 50 cycles.
// We just need a number alpha close to max(x) such that x/alpha = O(1).
// The cost of approx is about 11 instructions, much cheaper than div.
//
// Assume x = sign * 2^(E-127) * mantissa, "approx" handles the following
// four cases:
//
// case 1: x is a normal number
//    0 < E < 255
//    x is normal
//    x = sign * 2^(E-127) * 1.b22b21... b1b0
//    min(x) = 0x0080 0000
//           = 2^(-126) = 1.1754943508 x 10^(-38)
//    max(x) = 0x7f7f ffff
//           = 2^127 x (2 - 2^(-23)) = 3.4028234664 * 10^38
//
// case 2: x is a subnormal number
//    E = 0 and mantissa > 0
//    x = sign * 2^(-127) * b22.b21... b1b0
//      = sign * 2^(-126) * 0.b22b21... b1b0
//    min(x) = 0x000 0001
//           = 2^(-126) x 2^(-23) = 2^(-149) = 1.4*10^(-45)
//    max(x) = 007f ffff
//           = 2^(-126) x (1 - 2^(-23)) = 1.17 x 10^(-38)
//
// case 3: x = 0
//    E = 0 and mantissa = 0
//
// case 4: x = inf or nan
//    inf: E = 255 and mantissa = 0
//    nan: E = 255 and mantissa > 0
//
// Example 1: x = 14.0
//    alpha_u32 = 0x41000000
//    inv_alpha_u32 = 0x3e000000
//    alpha = 8.
//    inv_alpha = 0.125
// Example 2: x = 0.15625
//    alpha_u32 = 0x3e000000
//    inv_alpha_u32 = 0x41000000
//    alpha = 0.125
//    inv_alpha = 8.0
// Example 3: x = 1.e-43
//    alpha_u32 = 0x800000
//    inv_alpha_u32 = 0x7e800000
//    alpha = 1.1754943508222875e-38
//    inv_alpha = 8.507059173023462e+37
// Example 4: x = 1.0/0.0 (np.float32(np.inf))
//    alpha_u32 = 0x3f800000
//    inv_alpha_u32 = 0x3f800000
//    alpha = 1.0
//    inv_alpha = 1.0
// Example 5: x = 0.0/0.0 (np.float32(np.nan))
//    alpha_u32 = 0x3f800000
//    inv_alpha_u32 = 0x3f800000
//    alpha = 1.0
//    inv_alpha = 1.0
//
fn approx(x: f32, alpha: *f32, inv_alpha: *f32) void {
   const MASK_EXPONENT: u32 = 0x7F800000;
   const MASK_MANTISSA: u32 = 0x007FFFFF;
   const x_u32: u32 = @bitcast(u32, x);
   // x is presented by (sign | E | mantissa)
   // sign has 1 bit, E has 8 bits and mantissa has 23 bits
   // E = (x & MASK_EXPONEN) >> 23
   const exp: u32 = (x_u32 & MASK_EXPONENT);
   // mantissa = b22b21...b1b0 has 23-bit, need u32
   const mantissa: u32 = (x_u32) & MASK_MANTISSA;
   // E has 8-bit, use u16
   var E: u16 = @as(u16, (exp >> 23));

   // case 1: 0 < E < 255, x is normal
   // the following if-clause handles case 2, 3 and 4
   if (0 == E){
        if (0 == mantissa){
            // case 3: x = 0
            // reset alpha = 1
            E = 127;
        }else{
            // case 2: x is subnormal
            // reset alpha= 2^(-126)
            E = 1;
        }
    }
    if (255 == E){
        // case 4: x = inf or NAN
        // reset alpha = 1
        E = 127;
    }
    // alpha and inv_alpha are u32
    // alpha = 2^(E - 127)
    // inv_alpha = 1/alpha = 2^(127 - E)
    var alpha_u32: u32 = (@as(u32, E) << 23);
    var inv_alpha_u32: u32 = @as(u32, (254 - E)) << 23;

    alpha.* = @bitcast(f32, alpha_u32);
    inv_alpha.* = @bitcast(f32, inv_alpha_u32);
}



// kernel of ymax = max(|y|)
// return max(ymax, |yval|)
fn reduce_fabs(yval : f32, ymax : *f32) f32 {
    var yreg: f32 = math_lib.abs(yval);
    if (yreg > ymax.*){
        return yreg;
    }else{
        return ymax.*;
    }
}

// kernel of sum = reduce( (y/alpha)^2, +)
// return sum + (yval/alpha)**2
fn reduce_scale_square(yval: f32, inv_alpha: f32, sum: *f32) f32 {
    var yreg: f32 = yval * inv_alpha;
    return sum.* + yreg * yreg;
}

// return |y[0:n]|_2
fn nrm2(n:i16, y: [*]f32) f32 {
    var alpha: f32;
    var inv_alpha: f32;

    // step 1: ymax = max(|y|)
    var ymax: f32 = @as(f32,0);
    mem_y_dsd = @set_dsd_base_addr(mem_y_dsd, y);
    mem_y_dsd = @set_dsd_length(mem_y_dsd, @bitcast(u16,n));
    @map(reduce_fabs, mem_y_dsd, &ymax, &ymax);

    // step 2: ymax = alpha * (ymax/alpha)
    approx(ymax, &alpha, &inv_alpha);

    // step 3: sum = reduce( (y/alpha)^2, +)
    var sum: f32 = @as(f32, 0);
    @map(reduce_scale_square, mem_y_dsd, inv_alpha, &sum, &sum);

    // step 4: nrm2 = |y|_2 locally
    sum = math_lib.sqrt(sum);
    return (sum * alpha);
}

// kernel of sum = reduce( (y/alpha)^2, +)
// return sum + (yval/alpha)**2
fn reduce_dot(xval: f32, yval: f32, sum: *f32) f32 {
    return sum.* + xval * yval;
}

// return dot(x,y)
fn dot(n:i16, x: [*]f32, y: [*]f32) f32 {
    mem_x_dsd = @set_dsd_base_addr(mem_x_dsd, x);
    mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
    mem_y_dsd = @set_dsd_base_addr(mem_y_dsd, y);
    mem_y_dsd = @set_dsd_length(mem_y_dsd, @bitcast(u16,n));
    var sum: f32 = @as(f32, 0);
    @map(reduce_dot, mem_x_dsd, mem_y_dsd, &sum, &sum);

    return sum; 
}

run.py

#!/usr/bin/env cs_python
# pylint: disable=too-many-function-args

""" test Conjugate Gradient of a sparse matrix A built by 7-point stencil

  The following CG algorithm is adopted from algorithm 10.2.1 [1].
  ---
  The algorithm of Conjugate Gradient (CG) is
    Given b, x0 and tol = eps*|b|
    k = 0
    x = x0
    r = b - A*x
    rho = |r|^2
    while rho > tol*tol and k < max_ite
        k = k + 1
        if k == 1
           p = r
        else
           beta = rho / rho_old
           p = r + beta * p
        end
        w = A*p
        eta = dot(w, p)
        alpha = rho/eta
        x = x + alpha * p
        r = r - alpha * w
        rho_old = rho
        rho = |r|^2
    end
    x approximates the solution of a linear system Ax = b

  The sparse matrix A is built by a 7-point stenil.
  The 7-point stencil is defined by the following:
  ---
    The Laplacian operator L on 3-dimensional domain can be represented by 7-point
  stencil based on the standard 2nd order Finite Difference Method. The operator form
  with Dirichlet boundary conditions can be written by
         L[u](i,j,k) = u(i+1, j,  k  ) + u(i-1, j,   k  ) +
                       u(i,   j+1,k  ) + u(i,   j-1, k  ) +
                       u(i,   j,  k+1) + u(i,   j,   k-1) +
                      -6*u(i, j, k)
  In general the coefficients of those 7 points can vary. To minimize the memory
  consumption, this example assumes the coefficients are independent of index k and
  whole vector u(i,j,:) is placed in one PE (px=j, py=i).
  The above formula can be re-written by
     c_west   * x[i-1][j  ][k  ] + c_east  * x[i+1][j  ][k  ] +
     c_south  * x[i  ][j-1][k  ] + c_north * x[i  ][j+1][k  ] +
     c_bot    * x[i  ][j  ][k-1] + c_top   * x[i  ][j  ][k+1] +
     c_center * x[i][j][k]
  Each PE only holds 7 coefficients organized by c_west, c_east, c_south, c_north,
  c_bot, c_top and c_center.

  This example provides two modules, one is allreduce and the other is stencil_3d_7pts.
  "allreduce" module can synchronize all PEs to form a reference clock.
  "allreduce" module also computes dot(x,y) over a core rectangle.
  "stencil_3d_7pts" module can compute y = A*x where A is the matrix from 7-point stencil.

  The framework is
  ---
       sync()      // synchronize all PEs to sample the reference clock
       tic()       // record start time
       r = b - A*x
       for k = ...
         update p
         w = A*p
         update x
         update r
         update rho=(r,r)
         D2H(rho) to check convergence
       end
       toc()       // record end time
  ---
  This framework does transfer the nrm(r) back to host for each iteration of CG. So the
  I/O pressure is high, not good for performance. The run_cg.py removes this IO pressure.

  The tic() samples "time_start" and toc() samples "time_end". The sync() samples
  "time_ref" which is used to shift "time_start" and "time_end".
  The elapsed time is measured by
       cycles_send = max(time_end) - min(time_start)

  The overall runtime is computed via the following formula
       time_send = (cycles_send / 0.85) *1.e-3 us
  where a PE runs with clock speed 850MHz

  Here is the list of parameters:
    -m=<int> is the height of the core
    -n=<int> is the width of the core
    -k=<int> is size of x and y allocated in the core
    --zDim=<int> is the number of f32 per PE, computed by y = A*x
                 zDim must be not greater than k
    --max-ite=<int> number of iterations
    --channels=<int> specifies the number of I/O channels, no bigger than 16

  Reference:
  [1] Gene H. Golub, Charles F. Van Loan, MATRIX COMPUTATIONS third edition,
      Johns Hopkins
"""


import os
from typing import Optional
from pathlib import Path
import shutil
import subprocess
import random

import numpy as np
from scipy.sparse.linalg import eigs

from cerebras.sdk.runtime import runtime_utils # pylint: disable=no-name-in-module
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType, MemcpyOrder # pylint: disable=no-name-in-module

from cmd_parser import parse_args

from util import (
    hwl_2_oned_colmajor,
    oned_to_hwl_colmajor,
    laplacian,
    csr_7_pt_stencil,
)

from cg import conjugateGradient

def make_u48(words):
  return words[0] + (words[1] << 16) + (words[2] << 32)


def csl_compile_core(
    cslc: str,
    width: int,  # width of the core
    height: int, # height of the core
    pe_length: int,
    blockSize: int,
    file_config: str,
    elf_dir: str,
    fabric_width: int,
    fabric_height: int,
    core_fabric_offset_x: int, # fabric-offsets of the core
    core_fabric_offset_y: int,
    use_precompile: bool,
    arch: Optional[str],
    LAUNCH: int,
    C0: int,
    C1: int,
    C2: int,
    C3: int,
    C4: int,
    C5: int,
    C6: int,
    C7: int,
    C8: int,
    channels: int,
    width_west_buf: int,
    width_east_buf: int
):
  if not use_precompile:
    args = []
    args.append(cslc) # command
    args.append(file_config)
    args.append(f"--fabric-dims={fabric_width},{fabric_height}")
    args.append(f"--fabric-offsets={core_fabric_offset_x},{core_fabric_offset_y}")
    args.append(f"--params=width:{width},height:{height},MAX_ZDIM:{pe_length}")
    args.append(f"--params=BLOCK_SIZE:{blockSize}")
    args.append(f"--params=LAUNCH_ID:{LAUNCH}")
    args.append(f"--params=C0_ID:{C0}")
    args.append(f"--params=C1_ID:{C1}")
    args.append(f"--params=C2_ID:{C2}")
    args.append(f"--params=C3_ID:{C3}")
    args.append(f"--params=C4_ID:{C4}")
    args.append(f"--params=C5_ID:{C5}")
    args.append(f"--params=C6_ID:{C6}")
    args.append(f"--params=C7_ID:{C7}")
    args.append(f"--params=C8_ID:{C8}")

    args.append(f"-o={elf_dir}")
    if arch is not None:
      args.append(f"--arch={arch}")
    args.append("--memcpy")
    args.append(f"--channels={channels}")
    args.append(f"--width-west-buf={width_west_buf}")
    args.append(f"--width-east-buf={width_east_buf}")

    print(f"subprocess.check_call(args = {args}")
    subprocess.check_call(args)
  else:
    print("\tuse pre-compile ELFs")


def timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl):
  # time_start = start time of spmv
  time_start = np.zeros((height, width)).astype(int)
  # time_end = end time of spmv
  time_end = np.zeros((height, width)).astype(int)
  word = np.zeros(3).astype(np.uint16)
  for w in range(width):
    for h in range(height):
      word[0] = time_memcpy_hwl[(h, w, 0)]
      word[1] = time_memcpy_hwl[(h, w, 1)]
      word[2] = time_memcpy_hwl[(h, w, 2)]
      time_start[(h,w)] = make_u48(word)
      word[0] = time_memcpy_hwl[(h, w, 3)]
      word[1] = time_memcpy_hwl[(h, w, 4)]
      word[2] = time_memcpy_hwl[(h, w, 5)]
      time_end[(h,w)] = make_u48(word)

  # time_ref = reference clock
  time_ref = np.zeros((height, width)).astype(int)
  word = np.zeros(3).astype(np.uint16)
  for w in range(width):
    for h in range(height):
      word[0] = time_ref_hwl[(h, w, 0)]
      word[1] = time_ref_hwl[(h, w, 1)]
      word[2] = time_ref_hwl[(h, w, 2)]
      time_ref[(h, w)] = make_u48(word)

  # adjust the reference clock by the propagation delay
  # the right-bottom PE signals other PEs, the propagation delay is
  #     (h-1) - py + (w-1) - px
  for py in range(height):
    for px in range(width):
      time_ref[(py, px)] = time_ref[(py, px)] - ((width+height-2)-(px + py))

  # shift time_start and time_end by time_ref
  time_start = time_start - time_ref
  time_end = time_end - time_ref

  # cycles_send = time_end[(h,w)] - time_start[(h,w)]
  # 850MHz --> 1 cycle = (1/0.85) ns = (1/0.85)*1.e-3 us
  # time_send = (cycles_send / 0.85) *1.e-3 us
  #
  min_time_start = time_start.min()
  max_time_end = time_end.max()
  cycles_send = max_time_end - min_time_start
  time_send = (cycles_send / 0.85) *1.e-3
  print(f"cycles_send = {cycles_send} cycles")
  print(f"time_send = {time_send} us")


# How to compile
#   python run.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
#   --width-west-buf=0 --width-east-buf=0 --compile-only
# How to run
#   python run.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
#   --width-west-buf=0 --width-east-buf=0 --run-only --zDim=5 --max-ite=1
def main():
  """Main method to run the example code."""

  random.seed(127)

  args, dirname = parse_args()

  cslc = "cslc"
  if args.driver is not None:
    cslc = args.driver

  print(f"cslc = {cslc}")

  width_west_buf = args.width_west_buf
  width_east_buf = args.width_east_buf
  channels = args.channels
  assert channels <= 16, "only support up to 16 I/O channels"
  assert channels >= 1, "number of I/O channels must be at least 1"

  print(f"width_west_buf = {width_west_buf}")
  print(f"width_east_buf = {width_east_buf}")
  print(f"channels = {channels}")

  height = args.m
  width = args.n
  pe_length = args.k
  zDim = args.zDim
  blockSize = args.blockSize
  max_ite = args.max_ite

  print(f"width = {width}, height = {height}, pe_length={pe_length}, zDim={zDim}, blockSize={blockSize}")
  print(f"max_ite = {max_ite}")
  assert pe_length >= 2, "the maximum size of z must be greater than 1"
  assert zDim <= pe_length, "[0, zDim) cannot exceed the storage"

  np.random.seed(2)
  x = np.arange(height*width*zDim).reshape(height, width, zDim).astype(np.float32) + 100

  x_1d = hwl_2_oned_colmajor(height, width, zDim, x, np.float32)
  nrm2_x = np.linalg.norm(x_1d.ravel(), 2)
  # |x0|_2 = 1
  x_1d = x_1d / nrm2_x
  x = x / nrm2_x

  b = np.arange(height*width*pe_length).reshape(height, width, pe_length).astype(np.float32) + 1
  b_1d = hwl_2_oned_colmajor(height, width, pe_length, b, np.float32)

  # stencil coefficients has the following order
  # {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
  stencil_coeff = np.zeros((height, width, 7), dtype = np.float32)
  for i in range(height):
    for j in range(width):
      stencil_coeff[(i, j, 0)] = -1 # west
      stencil_coeff[(i, j, 1)] = -1 # east
      stencil_coeff[(i, j, 2)] = -1 # south
      stencil_coeff[(i, j, 3)] = -1 # north
      stencil_coeff[(i, j, 4)] = -1 # bottom
      stencil_coeff[(i, j, 5)] = -1 # top
      stencil_coeff[(i, j, 6)] = 6  # center


  # fabric-offsets = 1,1
  fabric_offset_x = 1
  fabric_offset_y = 1
  # starting point of the core rectangle = (core_fabric_offset_x, core_fabric_offset_y)
  # memcpy framework requires 3 columns at the west of the core rectangle
  # memcpy framework requires 2 columns at the east of the core rectangle
  core_fabric_offset_x = fabric_offset_x + 3 + width_west_buf
  core_fabric_offset_y = fabric_offset_y
  # (min_fabric_width, min_fabric_height) is the minimal dimension to run the app
  min_fabric_width = (core_fabric_offset_x + width + 2 + 1 + width_east_buf)
  min_fabric_height = (core_fabric_offset_y + height + 1)

  fabric_width = 0
  fabric_height = 0
  if args.fabric_dims:
    w_str, h_str = args.fabric_dims.split(",")
    fabric_width = int(w_str)
    fabric_height = int(h_str)

  if fabric_width == 0 or fabric_height == 0:
    fabric_width = min_fabric_width
    fabric_height = min_fabric_height

  assert fabric_width >= min_fabric_width
  assert fabric_height >= min_fabric_height

  # prepare the simulation
  print('store ELFs and log files in the folder ', dirname)

  # layout of a rectangle
  code_csl = "layout.csl"

  C0 = 0
  C1 = 1
  C2 = 2
  C3 = 3
  C4 = 4
  C5 = 5
  C6 = 6
  C7 = 7
  C8 = 8
  LAUNCH = 10

  csl_compile_core(
      cslc,
      width,
      height,
      pe_length,
      blockSize,
      code_csl,
      dirname,
      fabric_width,
      fabric_height,
      core_fabric_offset_x,
      core_fabric_offset_y,
      args.run_only,
      args.arch,
      LAUNCH,
      C0,
      C1,
      C2,
      C3,
      C4,
      C5,
      C6,
      C7,
      C8,
      channels,
      width_west_buf,
      width_east_buf
  )
  if args.compile_only:
    print("COMPILE ONLY: EXIT")
    return

  A_csr = csr_7_pt_stencil(stencil_coeff, height, width, zDim)

  # check if A is symmetric or not
  A_csc = A_csr.tocsc(copy=True)
  A_csc = A_csc.sorted_indices().astype(np.float32)
  assert 0 == np.linalg.norm(A_csr.indptr - A_csc.indptr, np.inf), "A must be symmetric"
  assert 0 == np.linalg.norm(A_csr.indices - A_csc.indices, np.inf), "A must be symmetric"
  assert 0 == np.linalg.norm(A_csr.data - A_csc.data, np.inf), "A must be symmetric"

  nrm_b = np.linalg.norm(b_1d.ravel(), 2)
  eps = 1.e-3
  tol = eps * nrm_b
  print(f"|b| = {nrm_b}")
  print(f"max_ite = {max_ite}")
  print(f"eps = {eps}")
  print(f"tol = {tol}")

  xf_1d, rho, k = conjugateGradient(A_csr, x_1d, b_1d, max_ite, tol)
  print(f"[host] after CG, rho = {rho}, k = {k}")

  memcpy_dtype = MemcpyDataType.MEMCPY_32BIT
  simulator = SdkRuntime(dirname, cmaddr=args.cmaddr)

  symbol_b = simulator.get_id("b")
  symbol_x = simulator.get_id("x")
  symbol_rho = simulator.get_id("rho")
  symbol_stencil_coeff = simulator.get_id("stencil_coeff")
  symbol_time_buf_u16 = simulator.get_id("time_buf_u16")
  symbol_time_ref = simulator.get_id("time_ref")

  simulator.load()
  simulator.run()

  print(f"copy vector b and x0")
  simulator.memcpy_h2d(symbol_b, b_1d, 0, 0, width, height, zDim,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)

  simulator.memcpy_h2d(symbol_x, x_1d, 0, 0, width, height, zDim,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)

  print(f"copy 7 stencil coefficients")
  stencil_coeff_1d = hwl_2_oned_colmajor(height, width, 7, stencil_coeff, np.float32)
  simulator.memcpy_h2d(symbol_stencil_coeff, stencil_coeff_1d, 0, 0, width, height, 7,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)

  print("step 0: enable timer")
  simulator.launch("f_enable_timer", nonblock=False)

  print("step 1: sync all PEs")
  simulator.launch("f_sync", nonblock=False)

  print("step 2: copy reference clock from reduce module")
  simulator.launch("f_reference_timestamps", nonblock=False)

  print("step 3: tic() records time_start")
  simulator.launch("f_tic", nonblock=True)

  print(f"step 4: conjugate gradient with max_ite = {max_ite}, zDim = {zDim}")

  print("step 4.1: initialization")
  # - setup the length of all DSDs
  # - setup the size of local tensor
  simulator.launch("f_cg_init", np.int16(zDim), nonblock=False)

  k = 0
  print("step 4.2: r0 = b - A*x0 and compute rho = |r0|^2")
  # w = A*x0
  simulator.launch("f_spmv_Ax", nonblock=False)
  # r0 = b - w = b - A*x0
  # rho = |r0|^2
  simulator.launch("f_residual", nonblock=False)

  # [optional] D2H(rho)
  rho_wse = np.zeros(1, np.float32)
  simulator.memcpy_d2h(rho_wse, symbol_rho, 0, 0, 1, 1, 1,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
  rho = rho_wse[0]
  print(f"[CG] iter {k}: rho = {rho}")
  # if |r_k|_2 < tol, then exit
  while ( (rho > tol*tol) and (k < max_ite) ):
    k = k + 1
    print("step 4.3: update p")
    # if k == 1
    #   p = r
    # else
    #   beta = rho/rho_old
    #   p = r + beta * p
    simulator.launch("f_update_p", np.int16(k), nonblock=False)

    # alpha_{k} = |r_{k-1}|^2/<p_{k}, A*p_{k}>
    print("step 4.4: compute w = A*p")
    # w = A*p
    simulator.launch("f_spmv_Ap", nonblock=False)

    print("step 4.5: update eta")
    # eta = np.dot(p,w) = <p_{k}, A*p_{k}>
    simulator.launch("f_eta", nonblock=False)

    print("step 4.6: update alpha, x, r and rho")
    # alpha = rho/eta
    # x = x + alpha * p
    # r = r - alpha * w  where w = A*p
    # rho_old = rho
    # rho = np.dot(r,r)
    simulator.launch("f_update_x_r_rho", nonblock=False)

    # [optional] D2H(rho)
    simulator.memcpy_d2h(rho_wse, symbol_rho, 0, 0, 1, 1, 1,\
      streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
    rho = rho_wse[0]
    print(f"[CG] iter {k}: rho = {rho}")


  print("step 5: toc() records time_end")
  simulator.launch("f_toc", nonblock=False)

  print("step 6: prepare (time_start, time_end)")
  simulator.launch("f_memcpy_timestamps", nonblock=False)

  print("step 7: D2H (time_start, time_end)")
  time_memcpy_hwl_1d = np.zeros(height*width*6, np.uint32)
  simulator.memcpy_d2h(time_memcpy_hwl_1d, symbol_time_buf_u16, 0, 0, width, height, 6,\
    streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
  time_memcpy_hwl = oned_to_hwl_colmajor(height, width, 6, time_memcpy_hwl_1d, np.uint16)

  print("step 8: D2H reference clock")
  time_ref_1d = np.zeros(height*width*3, np.uint32)
  simulator.memcpy_d2h(time_ref_1d, symbol_time_ref, 0, 0, width, height, 3,\
    streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
  time_ref_hwl = oned_to_hwl_colmajor(height, width, 3, time_ref_1d, np.uint16)

  print("step 9: D2H x[zDim]")
  xf_wse_1d = np.zeros(height*width*zDim, np.float32)
  simulator.memcpy_d2h(xf_wse_1d, symbol_x, 0, 0, width, height, zDim,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)

  simulator.stop()

  if args.cmaddr is None:
    # move simulation log and core dump to the given folder
    dst_log = Path(f"{dirname}/sim.log")
    src_log = Path("sim.log")
    if src_log.exists():
      shutil.move(src_log, dst_log)

    dst_trace = Path(f"{dirname}/simfab_traces")
    src_trace = Path("simfab_traces")
    if dst_trace.exists():
      shutil.rmtree(dst_trace)
    if src_trace.exists():
      shutil.move(src_trace, dst_trace)

  timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl)

  nrm2_xf = np.linalg.norm(xf_wse_1d.ravel(), 2)
  print(f"|xf|_2 = {nrm2_xf}")

  z = xf_1d.ravel() - xf_wse_1d.ravel()
  nrm_z = np.linalg.norm(z, np.inf)
  print(f"|xf_ref - xf_wse| = {nrm_z}")
  np.testing.assert_allclose(xf_1d.ravel(), xf_wse_1d.ravel(), 1.e-5)
  print("\nSUCCESS!")

  vals, vecs = eigs(A_csr, k=1, which='SM')
  min_eig = abs(vals[0])
  vals, vecs = eigs(A_csr, k=1, which='LM')
  max_eig = abs(vals[0])
  print(f"min(eig) = {min_eig}")
  print(f"max(eig) = {max_eig}")
  print(f"cond(A) = {max_eig/min_eig}")

  if 0:
    debug_mod = debug_util(dirname, cmaddr=args.cmaddr)
    print(f"=== dump rho with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
    for py in range(height):
      for px in range(width):
        t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'rho', np.float32)
        print(f"(py, px) = {py, px}, rho_ij = {t}")


if __name__ == "__main__":
  main()

cmd_parser.py

# This is not a real test, but a module that gets imported in other tests.

"""command parser for bandwidthTest

   -m <int>     number of rows of the core rectangle
   -n <int>     number of columns of the core rectangle
   -k <int>     number of elements of local tensor
   --zDim <int>   number of elements to compute y=A*x
   --blockSize <int>  the size of temporary buffers for communication
   --latestlink   working directory
   --driver     path to CSL compiler
   --fabric-dims  fabric dimension of a WSE
   --cmaddr       IP address of a WSE
   --channels        number of I/O channels, 1 <= channels <= 16
   --width-west-buf  number of columns of the buffer in the west of the core rectangle
   --width-east-buf  number of columns of the buffer in the east of the core rectangle
   --compile-only    compile ELFs
   --run-only        run the test with precompiled binary
"""


import os
import argparse


def parse_args():
  parser = argparse.ArgumentParser()
  parser.add_argument(
      "-m",
      default=1, type=int,
      help="number of rows")
  parser.add_argument(
      "-n",
      default=1, type=int,
      help="number of columns")
  parser.add_argument(
      "-k",
      default=1, type=int,
      help="size of local tensor, no less than 2")
  parser.add_argument(
      "--zDim",
      default=2, type=int,
      help="[0 zDim-1) is the domain of Laplacian")
  parser.add_argument(
      "--max-ite",
      default=1, type=int,
      help="maximum number of iterations of power method")
  parser.add_argument(
      "--latestlink",
      help="folder to contain the log files (default: latest)")
  parser.add_argument(
      "-d",
      "--driver",
      help="The path to the CSL compiler")
  parser.add_argument(
      "--compile-only",
      help="Compile only", action="store_true")
  parser.add_argument(
      "--fabric-dims",
      help="Fabric dimension, i.e. <W>,<H>")
  parser.add_argument(
      "--cmaddr",
      help="CM address and port, i.e. <IP>:<port>")
  parser.add_argument(
      "--run-only",
      help="Run only", action="store_true")
  # arch = wse1 or wse2
  parser.add_argument(
      "--arch",
      help="wse1 or wse2. Default is wse1 when not supplied.")
  parser.add_argument(
      "--width-west-buf",
      default=0, type=int,
      help="width of west buffer")
  parser.add_argument(
      "--width-east-buf",
      default=0, type=int,
      help="width of east buffer")
  parser.add_argument(
      "--channels",
      default=1, type=int,
      help="number of I/O channels, between 1 and 16")
  parser.add_argument(
      "--blockSize",
      default=2, type=int,
      help="the size of temporary buffers for communication")

  args = parser.parse_args()

  logs_dir = "latest"
  if args.latestlink:
    logs_dir = args.latestlink

  dir_exist = os.path.isdir(logs_dir)
  if dir_exist:
    print(f"{logs_dir} already exists")
  else:
    print(f"create {logs_dir} to store log files")
    os.mkdir(logs_dir)

  return args, logs_dir

util.py


import os
import numpy as np

from scipy.sparse import coo_matrix


def COL_MAJOR(h, w, l, height, width, pe_length):
    assert 0 <= h and h < height
    assert 0 <= w and w < width
    assert 0 <= l and l < pe_length

    return (h + w*height + l*height*width)


def hwl_2_oned_colmajor(
    height: int,
    width: int,
    pe_length: int,
    A_hwl: np.ndarray,
    dtype
):
  """
    Given a 3-D tensor A[height][width][pe_length], transform it to
    1D array by column-major
  """
  A_1d = np.zeros(height*width*pe_length, dtype)
  idx = 0
  for l in range(pe_length):
    for w in range(width):
      for h in range(height):
        A_1d[idx] = A_hwl[(h, w, l)]
        idx = idx + 1
  return A_1d


def oned_to_hwl_colmajor(
    height: int,
    width: int,
    pe_length: int,
    A_1d: np.ndarray,
    dtype
):
    """
    Given a 1-D tensor A_1d[height*width*pe_length], transform it to
    3-D tensor A[height][width][pe_length] by column-major
    """
    if dtype == np.float32:
        # only support f32 to f32
        assert A_1d.dtype == np.float32, "only support f32 to f32"
        A_hwl = np.reshape(A_1d, (height, width, pe_length), order='F')

    elif dtype == np.uint16:
        # only support u32 to u16 by dropping upper 16-bit
        assert A_1d.dtype == np.uint32, "only support u32 to u16"
        A_hwl = np.zeros((height, width, pe_length), dtype)
        idx = 0
        for l in range(pe_length):
            for w in range(width):
                for h in range(height):
                    x = A_1d[idx]
                    x = x & 0x0000FFFF # drop upper 16-bit
                    A_hwl[(h, w, l)] = np.uint16(x)
                    idx = idx + 1
    else:
        raise RuntimeError(f"{dtype} is not supported")

    return A_hwl



#  y = Laplacian(x) for z=0,1,..,zDim-1
#
# The capacity of x and y can be bigger than zDim, but the physical domain is [0,zDim)
#
# The coordinates of physical domain are x,y,z.
# The physical layout of WSE is width, height.
# To avoid confusion, the kernel is written based on the layout of
# WSE, not physical domain of the application.
# For example, the user can match x-coordinate to x direction of
# WSE and y-coordinate to y-direction of WSE.
#              x-coord
#            +--------+
#    y-coord |        |
#            +--------+
#
# The stencil coefficients "stencil_coeff" can vary along x-y direction,
# but universal along z-direction. Each PE can have seven coefficents,
# west, east, south, north, bottom, top and center.
#
# Input:
#   stencil_coeff: size is (h,w,7)
#   x: size is (h,w,l)
# Output:
#   y: size is (h,w,l)
#
def laplacian(stencil_coeff, zDim, x, y):
  (height, width, pe_length) = x.shape
  assert zDim <= pe_length
  # y and x must have the same dimensions
  (m, n, k) = y.shape
  assert m == height
  assert n == width
  assert pe_length == k
  # stencil_coeff must be (h,w,7)
  (m, n, k) = stencil_coeff.shape
  assert m == height
  assert n == width
  assert 7 == k

#          North
#           j
#        +------+
# West i |      | East
#        +------+
#          south
  for i in range(height):
    for j in range(width):
      for k in range(zDim):
        c_west = stencil_coeff[(i,j,0)]
        c_east = stencil_coeff[(i,j,1)]
        c_south = stencil_coeff[(i,j,2)]
        c_north = stencil_coeff[(i,j,3)]
        c_bottom = stencil_coeff[(i,j,4)]
        c_top = stencil_coeff[(i,j,5)]
        c_center = stencil_coeff[(i,j,6)]

        west_buf = 0 # x[(i,-1,k)]
        if 0 < j:
          west_buf = x[(i,j-1,k)]
        east_buf = 0  # x[(i,w,k)]
        if j < width-1:
          east_buf = x[(i,j+1,k)]
        north_buf = 0; # x[(-1,j,k)]
        if 0 < i:
          north_buf = x[(i-1,j,k)]
        south_buf = 0  # x[(h,j,k)]
        if i < height-1:
          south_buf = x[(i+1,j,k)]
        bottom_buf = 0 # x[(i,j,-1)]
        if 0 < k:
          bottom_buf = x[(i,j,k-1)]
        top_buf = 0    # x[(i,j,l)]
        if k < zDim-1:
          top_buf = x[(i,j,k+1)]
        center_buf = x[(i,j,k)]
        y[(i,j,k)] = c_west*west_buf + c_east*east_buf + \
                     c_south*south_buf + c_north*north_buf + \
                     c_bottom*bottom_buf + c_top*top_buf + \
                     c_center*center_buf


# Given a 7-point stencil, generate sparse matrix A.
# A is represented by CSR.
# The order of grids is column-major
def csr_7_pt_stencil(stencil_coeff, height, width, pe_length):
  # stencil_coeff must be (h,w,7)
  (m, n, k) = stencil_coeff.shape
  assert m == height
  assert n == width
  assert 7 == k

  N = height * width * pe_length

  # each point has 7 coefficents at most
  cooRows = np.zeros(7*N, np.int32)
  cooCols = np.zeros(7*N, np.int32)
  cooVals = np.zeros(7*N, np.float32)

#          North
#           j
#        +------+
# West i |      | East
#        +------+
#          south
  nnz = 0
  for i in range(height):
    for j in range(width):
      for k in range(pe_length):
        c_west = stencil_coeff[(i,j,0)]
        c_east = stencil_coeff[(i,j,1)]
        c_south = stencil_coeff[(i,j,2)]
        c_north = stencil_coeff[(i,j,3)]
        c_bottom = stencil_coeff[(i,j,4)]
        c_top = stencil_coeff[(i,j,5)]
        c_center = stencil_coeff[(i,j,6)]

        center_idx = COL_MAJOR(i, j, k, height, width, pe_length)
        cooRows[nnz] = center_idx 
        cooCols[nnz] = center_idx
        cooVals[nnz] = c_center
        nnz += 1
        #west_buf = 0 # x[(i,-1,k)]
        if 0 < j:
          west_idx = COL_MAJOR(i, j-1, k, height, width, pe_length)
          cooRows[nnz] = center_idx
          cooCols[nnz] = west_idx
          cooVals[nnz] = c_west;
          nnz += 1
        #east_buf = 0  # x[(i,w,k)]
        if j < width-1:
          east_idx = COL_MAJOR(i,j+1,k, height, width, pe_length)
          cooRows[nnz] = center_idx
          cooCols[nnz] = east_idx
          cooVals[nnz] = c_east
          nnz += 1 
        #north_buf = 0; # x[(-1,j,k)]
        if 0 < i:
          north_idx = COL_MAJOR(i-1,j,k, height, width, pe_length)
          cooRows[nnz] = center_idx
          cooCols[nnz] = north_idx
          cooVals[nnz] = c_north
          nnz += 1
        #south_buf = 0  # x[(h,j,k)]
        if i < height-1:
          south_idx = COL_MAJOR(i+1,j,k, height, width, pe_length)
          cooRows[nnz] = center_idx
          cooCols[nnz] = south_idx
          cooVals[nnz] = c_south
          nnz += 1
        #bottom_buf = 0 # x[(i,j,-1)]
        if 0 < k:
          bottom_idx = COL_MAJOR(i,j,k-1, height, width, pe_length)
          cooRows[nnz] = center_idx
          cooCols[nnz] = bottom_idx
          cooVals[nnz] = c_bottom 
          nnz += 1
        #top_buf = 0    # x[(i,j,l)]
        if k < pe_length-1:
          top_idx = COL_MAJOR(i,j,k+1, height, width, pe_length)
          cooRows[nnz] = center_idx
          cooCols[nnz] = top_idx
          cooVals[nnz] = c_top 
          nnz += 1

  A_coo = coo_matrix((cooVals, (cooRows, cooCols)), shape=(N, N))

  A_csr = A_coo.tocsr(copy=True)
  # sort column indices
  A_csr = A_csr.sorted_indices().astype(np.float32)
  assert 1 == A_csr.has_sorted_indices, "Error: A is not sorted"

  return A_csr

cg.py


import numpy as np
from numpy import linalg as LA

# solve a linear system A * x = b
# where A is a symmetric positive definite matrix
#
# The conjugate gradient method is adopted from Algorithm 10.2.1 of the book
#  GENE H. GOLUB, CHARLES F. VAN LOAN, MATRIX COMPUTATIONS, THIRD EDITION
#
# Input 
#  A_csr     sparse matrix of type scipy.sparse.csr_matrix
#  x0        initial guess, could be a random vector or the approximated solution
#            of some other iterative solver
#  b         right-hand-side vector
#  max_ite   maximum number of iterations
#  tol       tolerance to stop the algorithm
#            the bigger, the more iterations
#            usually tol = eps * |b| where eps > 1.e-6 for f32
# Output
#  x         approximated solution of A*x=b
#  rho       |b - A*x|^2
#  k         the number of iterations
# 
def conjugateGradient(A_csr, x0, b, max_ite, tol):
  k = 0
  x = np.copy(x0)
  # r0 = b - A*x0
  y = A_csr.dot(x)
  r = b - y
  # rho = |r0|^2
  rho = np.dot(r,r)
  print(f"[CG] iter {k}: rho = {rho}")
  # if |r_k|_2 < tol, then exit
  while ( (rho > tol*tol) and (k < max_ite) ):
    k = k + 1
    if k == 1:
      # p1 = r0
      p = r
    else:
      # beta_{k} = |r_{k-1}|^2/|r_{k-2}|^2
      beta = rho/rho_old
      # p_{k} = r_{k-1} + beta_{k} * p_{k-1}
      p = r + beta * p
    # alpha_{k} = |r_{k-1}|^2/<p_{k}, A*p_{k}>
    w = A_csr.dot(p)  # w = A*p_{k}
    eta = np.dot(p,w) # eta = <p_{k}, A*p_{k}>
    alpha = rho/eta
    # x_{k} = x_{k-1} + alpha_{k} * p_{k}
    x = x + alpha * p
    # r_{k} = r_{k-1} - alpha_{k} * A*p_{k}
    r = r - alpha * w
    # update rho 
    rho_old = rho
    rho = np.dot(r,r)
    print(f"[CG] iter {k}: rho = {rho}")
  return x, rho, k

commands.sh

#!/usr/bin/env bash

set -e

cslc ./layout.csl --fabric-dims=12,7 --fabric-offsets=4,1 \
--params=width:5,height:5,MAX_ZDIM:5 --params=LAUNCH_ID:10 --params=BLOCK_SIZE:2 --params=C0_ID:0 \
--params=C1_ID:1 --params=C2_ID:2 --params=C3_ID:3 --params=C4_ID:4 --params=C5_ID:5 \
--params=C6_ID:6 --params=C7_ID:7 --params=C8_ID:8 -o=out \
--memcpy --channels=1 --width-west-buf=0 --width-east-buf=0
cs_python ./run.py -m=5 -n=5 -k=5 --latestlink out --channels=1 \
--width-west-buf=0 --width-east-buf=0 --zDim=5 --run-only --max-ite=2

layout_cg.csl

// color map: memcpy + allreduce + stencil
//
// color  var   color  var        color  var              color  var
//   0   C0       9                18    EN_REDUCE_2       27   reserved (memcpy)
//   1   C1      10  LAUNCH        19    EN_REDUCE_3       28   reserved (memcpy)
//   2   C2      11                20    EN_REDUCE_4       29   reserved (memcpy)
//   3   C3      12  STATE         21    reserved (memcpy) 30   reserved (memcpy)
//   4   C4      13                22    reserved (memcpy) 31   reserved
//   5   C5      14  EN_STENCIL_1  23    reserved (memcpy) 32
//   6   C6      15  EN_STENCIL_2  24                      33
//   7   C7      16  EN_STENCIL_3  25                      34
//   8   C8      17  EN_REDUCE_1   26                      35
//

param LAUNCH_ID: i16;

// c0,c1,c2,c3,c4,c5,c6,c7 are internal colors of 7-point stencil
param C0_ID: i16;
param C1_ID: i16;
param C2_ID: i16;
param C3_ID: i16;
param C4_ID: i16;
param C5_ID: i16;
param C6_ID: i16;
param C7_ID: i16;
// c8 is an internal color of allreduce
param C8_ID: i16;

param MAX_ZDIM: i16; // maximum size of local vector x and y
param width: i16 ; // width of the core
param height: i16 ; // height of the core

param BLOCK_SIZE: i16; // size of temporary buffers for communication

const LAUNCH: color = @get_color(LAUNCH_ID);

const C0: color = @get_color(C0_ID);
const C1: color = @get_color(C1_ID);
const C2: color = @get_color(C2_ID);
const C3: color = @get_color(C3_ID);
const C4: color = @get_color(C4_ID);
const C5: color = @get_color(C5_ID);
const C6: color = @get_color(C6_ID);
const C7: color = @get_color(C7_ID);
const C8: color = @get_color(C8_ID);

// entrypoint of state machine in CG
const STATE: color = @get_color(12);

// entrypoints of 7-point stenil
const EN_STENCIL_1: color = @get_color(14);
const EN_STENCIL_2: color = @get_color(15);
const EN_STENCIL_3: color = @get_color(16);

// entrypoints of allreduce
const EN_REDUCE_1: color = @get_color(17);
const EN_REDUCE_2: color = @get_color(18);
const EN_REDUCE_3: color = @get_color(19);
const EN_REDUCE_4: color = @get_color(20);

const stencil = @import_module( "stencil_3d_7pts/layout.csl", .{
    .colors = [8]color{C0, C1, C2, C3, C4, C5, C6, C7},
    .entrypoints = [3]color{EN_STENCIL_1, EN_STENCIL_2, EN_STENCIL_3},
    .width = width,
    .height = height
    });

const reduce = @import_module( "allreduce/layout.csl", .{
    .colors = [1]color{C8},
    .entrypoints = [4]color{EN_REDUCE_1, EN_REDUCE_2, EN_REDUCE_3, EN_REDUCE_4},
    .width = width,
    .height = height
    });

const memcpy = @import_module( "<memcpy_multi/get_params>", .{
    .width = width,
    .height = height
    });

layout{

    @comptime_assert(C0_ID < C1_ID);
    @comptime_assert(C1_ID < C2_ID);
    @comptime_assert(C2_ID < C3_ID);
    @comptime_assert(C3_ID < C4_ID);
    @comptime_assert(C4_ID < C5_ID);
    @comptime_assert(C5_ID < C6_ID);
    @comptime_assert(C6_ID < C7_ID);
    @comptime_assert(C7_ID < C8_ID);
    @comptime_assert(C8_ID < LAUNCH_ID);

    @comptime_assert(LAUNCH_ID < 12);

    // step 1: configure the rectangle which does not include halo
    @set_rectangle( width, height );

    // step 2: compile csl code for a set of PEx.y and generate out_x_y.elf
    //   format: @set_tile_code(x, y, code.csl, param_binding);

    var py: i16 = 0;
    while(py < height) : (py +=1) {
        var px: i16 = 0;
        while(px < width) : (px +=1) {

            const memcpyParams = memcpy.get_params(px);
            const stencilParams = stencil.get_params(px, py);
            const reduceParams = reduce.get_params(px, py);
            var params: comptime_struct = .{
                .memcpyParams = memcpyParams,
                .reduceParams = reduceParams,
                .LAUNCH = LAUNCH,
                .MAX_ZDIM = MAX_ZDIM,
                .BLOCK_SIZE = BLOCK_SIZE,
                .STATE = STATE,
                .stencilParams = stencilParams
            };

            @set_tile_code(px, py, "kernel_cg.csl", params);
        }
    }

    @export_name("b", [*]f32, true);
    @export_name("x", [*]f32, true);
    @export_name("stencil_coeff", [*]f32, true);
    @export_name("time_buf_u16", [*]u16, true);
    @export_name("time_ref", [*]u16, true);
    @export_name("rho", [*]f32, true);

    @export_name("f_enable_timer", fn()void);
    @export_name("f_tic", fn()void);
    @export_name("f_toc", fn()void);
    @export_name("f_memcpy_timestamps", fn()void);

    @export_name("f_cg", fn(i16,f32,i16)void);

    @export_name("f_sync", fn()void);
    @export_name("f_reference_timestamps", fn()void);
} // end of layout

kernel_cg.csl

param memcpyParams: comptime_struct;

param reduceParams: comptime_struct;

param LAUNCH: color;

param stencilParams: comptime_struct;

param MAX_ZDIM: i16; // size of vector x

param BLOCK_SIZE: i16; // size of temporary buffers for communication

param STATE: color;

const timestamp = @import_module("<time>");

const math_lib = @import_module("<math>");

const blas_lib = @import_module("blas.csl");

// input/output queue ID = 0 is reserved for memcpy module
const sys_mod = @import_module( "<memcpy_multi/memcpy>", @concat_structs(memcpyParams, .{
     .LAUNCH = LAUNCH
      }));

// allreduce uses input queue/output queue 1
const reduce_mod = @import_module( "allreduce/pe.csl", @concat_structs(reduceParams, .{
     .f_callback = f_trigger_state_machine,
     .queues = [1]u16{1},
     .dest_dsr_ids = [1]u16{1},
     .src0_dsr_ids = [1]u16{1},
     .src1_dsr_ids = [1]u16{1}
     }));

// output queue cannot overlap input queues
const stencil_mod = @import_module( "stencil_3d_7pts/pe.csl", @concat_structs(stencilParams, .{
     .f_callback = f_trigger_state_machine,
     .input_queues = [4]u16{3, 4, 5, 6},
     .output_queues = [1]u16{2},
     .BLOCK_SIZE = BLOCK_SIZE,
     .dest_dsr_ids = [2]u16{2,3},
     .src0_dsr_ids = [1]u16{2},
     .src1_dsr_ids = [2]u16{2,3}
     }));


// tsc_size_words = 3
// starting time of H2D/D2H
var tscStartBuffer = @zeros([timestamp.tsc_size_words]u16);
// ending time of H2D/D2H
var tscEndBuffer = @zeros([timestamp.tsc_size_words]u16);

var b = @zeros([MAX_ZDIM]f32); // right-hand-side
var x = @zeros([MAX_ZDIM]f32); // approximated solution
var p = @zeros([MAX_ZDIM]f32); // Krylov space
var w = @zeros([MAX_ZDIM]f32); // w = A * p
var r = @zeros([MAX_ZDIM]f32); // residual

var dot = @zeros([1]f32); // dummy variable for f_sync
var rho = @zeros([1]f32);
var rho_old = @zeros([1]f32);
var eta = @zeros([1]f32);
var beta: f32 = @as(f32,0);

// stencil coefficients are organized as
// {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
//
// The formula is
//    c_west * x[i-1][j][k] + c_east * x[i+1][j][k] +
//    c_south * x[i][j-1][k] + c_north * x[i][j+1][k] +
//    c_bottom * x[i][j][k-1] + c_top * x[i][j][k+1] +
//    c_center * x[i][j][k]
var stencil_coeff = @zeros([7]f32);

// time_buf_u16[0:5] = {tscStartBuffer, tscEndBuffer}
var time_buf_u16 = @zeros([timestamp.tsc_size_words*2]u16);

// reference clock inside allreduce module
var time_ref_u16 = @zeros([timestamp.tsc_size_words]u16);

var ptr_b: [*]f32 = &b;
var ptr_x: [*]f32 = &x;
var ptr_stencil_coeff: [*]f32 = &stencil_coeff;
var ptr_time_buf_u16: [*]u16 = &time_buf_u16;
var ptr_time_ref: [*]u16 = &time_ref_u16;
var ptr_rho: [*]f32 = &rho;

// size of local tensor during the CG
var n: i16 = 0;
var tol: f32 = @as(f32, 0);
var max_ite: i16 = 0;

var mem_b_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> b[i] });
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> x[i] });
var mem_r_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r[i] });
var mem_p_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> p[i] });
var mem_w_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> w[i] });

const STATE_SYNC: i16 = 0;
const STATE_INIT: i16 = 1;
const STATE_SPMV_AX: i16 = 2;
const STATE_RESIDUAL: i16 = 3;
const STATE_CONV_CHECK: i16 = 4;
const STATE_UPDATE_P: i16 = 6;
const STATE_SPMV_AP: i16 = 7;
const STATE_ETA: i16 = 8;
const STATE_UPDATE_X_R_RHO: i16 = 9;
const STATE_EXIT: i16 = 10;

var k: i16 = 0;
var cur_state: i16 = 0;
var next_state: i16 = 0;

fn f_enable_timer() void {
    timestamp.enable_tsc();
    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

fn f_tic() void {
    timestamp.get_timestamp(&tscStartBuffer);

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

fn f_toc() void {
    timestamp.get_timestamp(&tscEndBuffer);

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

fn f_memcpy_timestamps() void {

    time_buf_u16[0] = tscStartBuffer[0];
    time_buf_u16[1] = tscStartBuffer[1];
    time_buf_u16[2] = tscStartBuffer[2];

    time_buf_u16[3] = tscEndBuffer[0];
    time_buf_u16[4] = tscEndBuffer[1];
    time_buf_u16[5] = tscEndBuffer[2];

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}


fn f_sync() void {
    cur_state = STATE_SYNC;
    @activate(STATE);
}

fn f_cg(size:i16, tol_val:f32, max_ite_val: i16) void {
    n = size;
    tol = tol_val;
    max_ite = max_ite_val;

    cur_state = STATE_INIT;
    @activate(STATE);
}


// initialization of CG
// - setup the length of all DSDs
//
fn f_cg_init() void {

    // set the length of all DSDs
    mem_b_dsd = @set_dsd_length(mem_b_dsd, @bitcast(u16,n));
    mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
    mem_p_dsd = @set_dsd_length(mem_p_dsd, @bitcast(u16,n));
    mem_r_dsd = @set_dsd_length(mem_r_dsd, @bitcast(u16,n));
    mem_w_dsd = @set_dsd_length(mem_w_dsd, @bitcast(u16,n));

    // must go back to state machine
    f_trigger_state_machine();
}

// w = A*x
fn f_spmv_Ax() void {
    stencil_mod.spmv(n, &stencil_coeff, &x, &w);
}

// compute r = b - w and rho = |r|^2
// where w = A*x is computed by f_spmv_Ax
fn f_residual() void {

    @fsubs(mem_r_dsd, mem_b_dsd, mem_w_dsd);

    // compute <r, r> locally
    rho[0] = blas_lib.dot(n, &r, &r);

    // reduce(|r|^2)
    reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}

// if k is 1
//   p = r0
// else
//   beta = rho/rho_old
//   p = r + beta*p
// end
fn f_update_p() void {
    if (1 == k){
        // p = r
        @fmovs(mem_p_dsd, mem_r_dsd);
    }else{
        // beta_{k} = |r_{k-1}|^2/|r_{k-2}|^2
        beta = rho[0]/rho_old[0];
        // p_{k} = r_{k-1} + beta_{k} * p_{k-1}
        @fmacs(mem_p_dsd, mem_r_dsd, mem_p_dsd, beta);
    }

    // must go back to state machine
    f_trigger_state_machine();
}

// w = A*p
fn f_spmv_Ap() void {
    stencil_mod.spmv(n, &stencil_coeff, &p, &w);
}

// eta = np.dot(p,w)
fn f_eta() void {
    // compute <w, p> locally
    eta[0] = blas_lib.dot(n, &w, &p);
    // reduce(<w,p>)
    reduce_mod.allreduce(1, &eta, reduce_mod.TYPE_BINARY_OP.ADD);
}

// update x, r and rho
// ---
// alpha = rho/eta
// x = x + alpha * p
// r = r - alpha * w where w = A*p
// rho_old = rho
// rho = np.dot(r,r)
// ---
//
// w must be computed by f_spmv_Ap()
// eta must be computed by f_eta()
//
fn f_update_x_r_rho() void {

    var alpha: f32 = rho[0]/eta[0];
    var alpha_minus: f32 = -alpha;

    // x_{k} = x_{k-1} + alpha_{k} * p_{k}
    // x = x + alpha * p
    @fmacs(mem_x_dsd, mem_x_dsd, mem_p_dsd, alpha);

    // r_{k} = r_{k-1} - alpha_{k} * A*p_{k}
    // r = r - alpha * w
    @fmacs(mem_r_dsd, mem_r_dsd, mem_w_dsd, alpha_minus);

    // update rho
    rho_old[0] = rho[0];

    // rho = np.dot(r,r)
    // compute <r, r> locally
    rho[0] = blas_lib.dot(n, &r, &r);
    // reduce(|r|^2)
    reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}


fn f_trigger_state_machine() void {
    cur_state = next_state; // go to next state
    @activate(STATE);
}

// state machine of CG
// it contains two operations
// - sync operation of allreduce
// - CG algorithm
//
// The callback f_trigger_state_machine is provided for the
// allreduce module and stencil module.
//
// The state transition of sync is
// SYNC --> EXIT
//
// The state transition of PCG algorithm is
// INIT --> SPMV_AX --> RESIDUAL --> CONV_CHECK --> EXIT OR UPDATE_Z
// --> UPDATE_P --> SPMV_AP --> ETA --> UPDATE_X_R_RHO --> CONV_CEHCK
//
task f_state() void {

    if (STATE_SYNC == cur_state){
        // sync all PEs by internal allreduce module
        next_state = STATE_EXIT;
        reduce_mod.allreduce(1, &dot, reduce_mod.TYPE_BINARY_OP.ADD);

    }else if (STATE_INIT == cur_state){
        next_state = STATE_SPMV_AX;
        f_cg_init();

    }else if (STATE_SPMV_AX == cur_state){
        next_state = STATE_RESIDUAL;
        k = 0;
        // w = A*x0
        f_spmv_Ax();

    }else if (STATE_RESIDUAL == cur_state){
        next_state = STATE_CONV_CHECK;
        // r0 = b - w = b - A*x0
        // rho = |r0|^2
        f_residual();

    }else if (STATE_CONV_CHECK == cur_state){
        // if |r_k|_2 < tol, then exit
        if ((rho[0] > tol*tol) and (k < max_ite)){
            next_state = STATE_UPDATE_P;
        }else{
            next_state = STATE_EXIT;
        }
        f_trigger_state_machine();

    }else if (STATE_UPDATE_P == cur_state){
        next_state = STATE_SPMV_AP;
        k = k + 1;
        // if k == 1
        //   p = z
        // else
        //   beta = rho/rho_old
        //   p = z + beta * p
        f_update_p();

    }else if (STATE_SPMV_AP == cur_state){
        next_state = STATE_ETA;
        // w = A*p
        f_spmv_Ap();

    }else if (STATE_ETA == cur_state){
        next_state = STATE_UPDATE_X_R_RHO;
        // eta = np.dot(p,w) = (p_{k}, A*p_{k})
        f_eta();

    }else if (STATE_UPDATE_X_R_RHO == cur_state){
        next_state = STATE_CONV_CHECK;
        // alpha = rho/eta
        // x = x + alpha * p
        // r = r - alpha * w  where w = A*p
        // rho_old = rho
        // rho = np.dot(r,r)
        f_update_x_r_rho();

    }else if (STATE_EXIT == cur_state){
        sys_mod.unblock_cmd_stream();
    }else{
        @assert(false); // Error: unknown state
        // assert() is ignored by HW, it could hang here
        // To avoid a stall, trigger callback (the caveat is the wrong result)
        sys_mod.unblock_cmd_stream();
    }
}


fn f_reference_timestamps() void {
    
    time_ref_u16[0] = reduce_mod.tscRefBuffer[0];
    time_ref_u16[1] = reduce_mod.tscRefBuffer[1];
    time_ref_u16[2] = reduce_mod.tscRefBuffer[2];

    // the user must unblock cmd color for every PE
    sys_mod.unblock_cmd_stream();
}

comptime {
    @bind_task( f_state, STATE);
}

comptime {
    @export_symbol(ptr_b, "b");
    @export_symbol(ptr_x, "x");
    @export_symbol(ptr_stencil_coeff, "stencil_coeff");
    @export_symbol(ptr_time_buf_u16, "time_buf_u16");
    @export_symbol(ptr_time_ref, "time_ref");
    @export_symbol(ptr_rho, "rho");
}

comptime{
    @export_symbol(f_enable_timer);
    @export_symbol(f_tic);
    @export_symbol(f_toc);
    @export_symbol(f_memcpy_timestamps);

    @export_symbol(f_cg);

    @export_symbol(f_sync);
    @export_symbol(f_reference_timestamps);

    @rpc(LAUNCH);
}

run_cg.py

#!/usr/bin/env cs_python
# pylint: disable=too-many-function-args

""" test Conjugate Gradient of a sparse matrix A built by 7-point stencil

  The following CG algorithm is adopted from algorithm 10.2.1 [1].
  ---
  The algorithm of Conjugate Gradient (CG) is
    Given b, x0 and tol = eps*|b|
    k = 0
    x = x0
    r = b - A*x
    rho = |r|^2
    while rho > tol*tol and k < max_ite
        k = k + 1
        if k == 1
           p = r
        else
           beta = rho / rho_old
           p = r + beta * p
        end
        w = A*p
        eta = dot(w, p)
        alpha = rho/eta
        x = x + alpha * p
        r = r - alpha * w
        rho_old = rho
        rho = |r|^2
    end
    x approximates the solution of a linear system Ax = b

  The sparse matrix A is built by a 7-point stenil.
  The 7-point stencil is defined by the following:
  ---
    The Laplacian operator L on 3-dimensional domain can be represented by 7-point
  stencil based on the standard 2nd order Finite Difference Method. The operator form
  with Dirichlet boundary conditions can be written by
         L[u](i,j,k) = u(i+1, j,  k  ) + u(i-1, j,   k  ) +
                       u(i,   j+1,k  ) + u(i,   j-1, k  ) +
                       u(i,   j,  k+1) + u(i,   j,   k-1) +
                      -6*u(i, j, k)
  In general the coefficients of those 7 points can vary. To minimize the memory
  consumption, this example assumes the coefficients are independent of index k and
  whole vector u(i,j,:) is placed in one PE (px=j, py=i).
  The above formula can be re-written by
     c_west   * x[i-1][j  ][k  ] + c_east  * x[i+1][j  ][k  ] +
     c_south  * x[i  ][j-1][k  ] + c_north * x[i  ][j+1][k  ] +
     c_bot    * x[i  ][j  ][k-1] + c_top   * x[i  ][j  ][k+1] +
     c_center * x[i][j][k]
  Each PE only holds 7 coefficients organized by c_west, c_east, c_south, c_north,
  c_bot, c_top and c_center.

  This example provides two modules, one is allreduce and the other is stencil_3d_7pts.
  "allreduce" module can synchronize all PEs to form a reference clock.
  "allreduce" module also computes dot(x,y) over a core rectangle.
  "stencil_3d_7pts" module can compute y = A*x where A is the matrix from 7-point stencil.

  The framework is
  ---
       sync()      // synchronize all PEs to sample the reference clock
       tic()       // record start time
       CG(n, tol, max_ite) // CG on WSE
       toc()       // record end time
  ---
  The run_cg.py performs CG on the WSE, not calls a sequence of spmv and dot.
  It is faster than run.py because the nrm(r) is not transferred back to the host.
  WSE can check the convergence without the host.

  The tic() samples "time_start" and toc() samples "time_end". The sync() samples
  "time_ref" which is used to shift "time_start" and "time_end".
  The elapsed time is measured by
       cycles_send = max(time_end) - min(time_start)

  The overall runtime is computed via the following formula
       time_send = (cycles_send / 0.85) *1.e-3 us
  where a PE runs with clock speed 850MHz

  Here is the list of parameters:
    -m=<int> is the height of the core
    -n=<int> is the width of the core
    -k=<int> is size of x and y allocated in the core
    --zDim=<int> is the number of f32 per PE, computed by y = A*x
                 zDim must be not greater than k
    --max-ite=<int> number of iterations
    --channels=<int> specifies the number of I/O channels, no bigger than 16

  Reference:
  [1] Gene H. Golub, Charles F. Van Loan, MATRIX COMPUTATIONS third edition,
      Johns Hopkins
"""


import os
from typing import Optional
from pathlib import Path
import shutil
import subprocess
import random

import numpy as np
from scipy.sparse.linalg import eigs

from cerebras.sdk.runtime import runtime_utils # pylint: disable=no-name-in-module
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType, MemcpyOrder # pylint: disable=no-name-in-module

from cmd_parser import parse_args

from util import (
    hwl_2_oned_colmajor,
    oned_to_hwl_colmajor,
    laplacian,
    csr_7_pt_stencil,
)

from cg import conjugateGradient

def make_u48(words):
  return words[0] + (words[1] << 16) + (words[2] << 32)


def csl_compile_core(
    cslc: str,
    width: int,  # width of the core
    height: int, # height of the core
    pe_length: int,
    blockSize: int,
    file_config: str,
    elf_dir: str,
    fabric_width: int,
    fabric_height: int,
    core_fabric_offset_x: int, # fabric-offsets of the core
    core_fabric_offset_y: int,
    use_precompile: bool,
    arch: Optional[str],
    LAUNCH: int,
    C0: int,
    C1: int,
    C2: int,
    C3: int,
    C4: int,
    C5: int,
    C6: int,
    C7: int,
    C8: int,
    channels: int,
    width_west_buf: int,
    width_east_buf: int
):
  if not use_precompile:
    args = []
    args.append(cslc) # command
    args.append(file_config)
    args.append(f"--fabric-dims={fabric_width},{fabric_height}")
    args.append(f"--fabric-offsets={core_fabric_offset_x},{core_fabric_offset_y}")
    args.append(f"--params=width:{width},height:{height},MAX_ZDIM:{pe_length}")
    args.append(f"--params=BLOCK_SIZE:{blockSize}")
    args.append(f"--params=LAUNCH_ID:{LAUNCH}")
    args.append(f"--params=C0_ID:{C0}")
    args.append(f"--params=C1_ID:{C1}")
    args.append(f"--params=C2_ID:{C2}")
    args.append(f"--params=C3_ID:{C3}")
    args.append(f"--params=C4_ID:{C4}")
    args.append(f"--params=C5_ID:{C5}")
    args.append(f"--params=C6_ID:{C6}")
    args.append(f"--params=C7_ID:{C7}")
    args.append(f"--params=C8_ID:{C8}")

    args.append(f"-o={elf_dir}")
    if arch is not None:
      args.append(f"--arch={arch}")
    args.append("--memcpy")
    args.append(f"--channels={channels}")
    args.append(f"--width-west-buf={width_west_buf}")
    args.append(f"--width-east-buf={width_east_buf}")

    print(f"subprocess.check_call(args = {args}")
    subprocess.check_call(args)
  else:
    print("\tuse pre-compile ELFs")


def timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl):
  # time_start = start time of spmv
  time_start = np.zeros((height, width)).astype(int)
  # time_end = end time of spmv
  time_end = np.zeros((height, width)).astype(int)
  word = np.zeros(3).astype(np.uint16)
  for w in range(width):
    for h in range(height):
      word[0] = time_memcpy_hwl[(h, w, 0)]
      word[1] = time_memcpy_hwl[(h, w, 1)]
      word[2] = time_memcpy_hwl[(h, w, 2)]
      time_start[(h,w)] = make_u48(word)
      word[0] = time_memcpy_hwl[(h, w, 3)]
      word[1] = time_memcpy_hwl[(h, w, 4)]
      word[2] = time_memcpy_hwl[(h, w, 5)]
      time_end[(h,w)] = make_u48(word)

  # time_ref = reference clock
  time_ref = np.zeros((height, width)).astype(int)
  word = np.zeros(3).astype(np.uint16)
  for w in range(width):
    for h in range(height):
      word[0] = time_ref_hwl[(h, w, 0)]
      word[1] = time_ref_hwl[(h, w, 1)]
      word[2] = time_ref_hwl[(h, w, 2)]
      time_ref[(h, w)] = make_u48(word)

  # adjust the reference clock by the propagation delay
  # the right-bottom PE signals other PEs, the propagation delay is
  #     (h-1) - py + (w-1) - px
  for py in range(height):
    for px in range(width):
      time_ref[(py, px)] = time_ref[(py, px)] - ((width+height-2)-(px + py))

  # shift time_start and time_end by time_ref
  time_start = time_start - time_ref
  time_end = time_end - time_ref

  # cycles_send = time_end[(h,w)] - time_start[(h,w)]
  # 850MHz --> 1 cycle = (1/0.85) ns = (1/0.85)*1.e-3 us
  # time_send = (cycles_send / 0.85) *1.e-3 us
  #
  min_time_start = time_start.min()
  max_time_end = time_end.max()
  cycles_send = max_time_end - min_time_start
  time_send = (cycles_send / 0.85) *1.e-3
  print(f"cycles_send = {cycles_send} cycles")
  print(f"time_send = {time_send} us")


# How to compile
#   python run_cg.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
#   --width-west-buf=0 --width-east-buf=0 --compile-only
# How to run
#   python run_cg.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
#   --width-west-buf=0 --width-east-buf=0 --run-only --zDim=5 --max-ite=1
def main():
  """Main method to run the example code."""

  random.seed(127)

  args, dirname = parse_args()

  cslc = "cslc"
  if args.driver is not None:
    cslc = args.driver

  print(f"cslc = {cslc}")

  width_west_buf = args.width_west_buf
  width_east_buf = args.width_east_buf
  channels = args.channels
  assert channels <= 16, "only support up to 16 I/O channels"
  assert channels >= 1, "number of I/O channels must be at least 1"

  print(f"width_west_buf = {width_west_buf}")
  print(f"width_east_buf = {width_east_buf}")
  print(f"channels = {channels}")

  height = args.m
  width = args.n
  pe_length = args.k
  zDim = args.zDim
  blockSize = args.blockSize
  max_ite = args.max_ite

  print(f"width = {width}, height = {height}, pe_length={pe_length}, zDim={zDim}, blockSize={blockSize}")
  print(f"max_ite = {max_ite}")
  assert pe_length >= 2, "the maximum size of z must be greater than 1"
  assert zDim <= pe_length, "[0, zDim) cannot exceed the storage"

  np.random.seed(2)
  x = np.arange(height*width*zDim).reshape(height, width, zDim).astype(np.float32) + 100

  x_1d = hwl_2_oned_colmajor(height, width, zDim, x, np.float32)
  nrm2_x = np.linalg.norm(x_1d.ravel(), 2)
  # |x0|_2 = 1
  x_1d = x_1d / nrm2_x
  x = x / nrm2_x

  b = np.arange(height*width*pe_length).reshape(height, width, pe_length).astype(np.float32) + 1
  b_1d = hwl_2_oned_colmajor(height, width, pe_length, b, np.float32)

  # stencil coefficients has the following order
  # {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
  stencil_coeff = np.zeros((height, width, 7), dtype = np.float32)
  for i in range(height):
    for j in range(width):
      stencil_coeff[(i, j, 0)] = -1 # west
      stencil_coeff[(i, j, 1)] = -1 # east
      stencil_coeff[(i, j, 2)] = -1 # south
      stencil_coeff[(i, j, 3)] = -1 # north
      stencil_coeff[(i, j, 4)] = -1 # bottom
      stencil_coeff[(i, j, 5)] = -1 # top
      stencil_coeff[(i, j, 6)] = 6  # center


  # fabric-offsets = 1,1
  fabric_offset_x = 1
  fabric_offset_y = 1
  # starting point of the core rectangle = (core_fabric_offset_x, core_fabric_offset_y)
  # memcpy framework requires 3 columns at the west of the core rectangle
  # memcpy framework requires 2 columns at the east of the core rectangle
  core_fabric_offset_x = fabric_offset_x + 3 + width_west_buf
  core_fabric_offset_y = fabric_offset_y
  # (min_fabric_width, min_fabric_height) is the minimal dimension to run the app
  min_fabric_width = (core_fabric_offset_x + width + 2 + 1 + width_east_buf)
  min_fabric_height = (core_fabric_offset_y + height + 1)

  fabric_width = 0
  fabric_height = 0
  if args.fabric_dims:
    w_str, h_str = args.fabric_dims.split(",")
    fabric_width = int(w_str)
    fabric_height = int(h_str)

  if fabric_width == 0 or fabric_height == 0:
    fabric_width = min_fabric_width
    fabric_height = min_fabric_height

  assert fabric_width >= min_fabric_width
  assert fabric_height >= min_fabric_height

  # prepare the simulation
  print('store ELFs and log files in the folder ', dirname)

  # layout of a rectangle
  code_csl = "layout_cg.csl"

  C0 = 0
  C1 = 1
  C2 = 2
  C3 = 3
  C4 = 4
  C5 = 5
  C6 = 6
  C7 = 7
  C8 = 8
  LAUNCH = 10

  csl_compile_core(
      cslc,
      width,
      height,
      pe_length,
      blockSize,
      code_csl,
      dirname,
      fabric_width,
      fabric_height,
      core_fabric_offset_x,
      core_fabric_offset_y,
      args.run_only,
      args.arch,
      LAUNCH,
      C0,
      C1,
      C2,
      C3,
      C4,
      C5,
      C6,
      C7,
      C8,
      channels,
      width_west_buf,
      width_east_buf
  )
  if args.compile_only:
    print("COMPILE ONLY: EXIT")
    return

  A_csr = csr_7_pt_stencil(stencil_coeff, height, width, zDim)

  # check if A is symmetric or not
  A_csc = A_csr.tocsc(copy=True)
  A_csc = A_csc.sorted_indices().astype(np.float32)
  assert 0 == np.linalg.norm(A_csr.indptr - A_csc.indptr, np.inf), "A must be symmetric"
  assert 0 == np.linalg.norm(A_csr.indices - A_csc.indices, np.inf), "A must be symmetric"
  assert 0 == np.linalg.norm(A_csr.data - A_csc.data, np.inf), "A must be symmetric"

  nrm_b = np.linalg.norm(b_1d.ravel(), 2)
  eps = 1.e-3
  tol = eps * nrm_b
  print(f"|b| = {nrm_b}")
  print(f"max_ite = {max_ite}")
  print(f"eps = {eps}")
  print(f"tol = {tol}")

  xf_1d, rho, k = conjugateGradient(A_csr, x_1d, b_1d, max_ite, tol)
  print(f"[host] after CG, rho = {rho}, k = {k}")

  memcpy_dtype = MemcpyDataType.MEMCPY_32BIT
  simulator = SdkRuntime(dirname, cmaddr=args.cmaddr)

  symbol_b = simulator.get_id("b")
  symbol_x = simulator.get_id("x")
  symbol_rho = simulator.get_id("rho")
  symbol_stencil_coeff = simulator.get_id("stencil_coeff")
  symbol_time_buf_u16 = simulator.get_id("time_buf_u16")
  symbol_time_ref = simulator.get_id("time_ref")

  simulator.load()
  simulator.run()

  print(f"copy vector b and x0")
  simulator.memcpy_h2d(symbol_b, b_1d, 0, 0, width, height, zDim,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)

  simulator.memcpy_h2d(symbol_x, x_1d, 0, 0, width, height, zDim,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)

  print(f"copy 7 stencil coefficients")
  stencil_coeff_1d = hwl_2_oned_colmajor(height, width, 7, stencil_coeff, np.float32)
  simulator.memcpy_h2d(symbol_stencil_coeff, stencil_coeff_1d, 0, 0, width, height, 7,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)

  print("step 0: enable timer")
  simulator.launch("f_enable_timer", nonblock=False)

  print("step 1: sync all PEs")
  simulator.launch("f_sync", nonblock=False)

  print("step 2: copy reference clock from reduce module")
  simulator.launch("f_reference_timestamps", nonblock=False)

  print("step 3: tic() records time_start")
  simulator.launch("f_tic", nonblock=True)

  print(f"step 4: Conjugate Gradient with max_ite={max_ite}, zDim={zDim}, tol={tol}")
  simulator.launch("f_cg", np.int16(zDim), np.float32(tol), np.int16(max_ite), nonblock=False)

  print("step 5: toc() records time_end")
  simulator.launch("f_toc", nonblock=False)

  rho_wse = np.zeros(1, np.float32)
  simulator.memcpy_d2h(rho_wse, symbol_rho, 0, 0, 1, 1, 1,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
  rho = rho_wse[0]
  print(f"[CG] rho = |b-A*x|^2 = {rho}")

  print("step 6: prepare (time_start, time_end)")
  simulator.launch("f_memcpy_timestamps", nonblock=False)

  print("step 7: D2H (time_start, time_end)")
  time_memcpy_hwl_1d = np.zeros(height*width*6, np.uint32)
  simulator.memcpy_d2h(time_memcpy_hwl_1d, symbol_time_buf_u16, 0, 0, width, height, 6,\
    streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
  time_memcpy_hwl = oned_to_hwl_colmajor(height, width, 6, time_memcpy_hwl_1d, np.uint16)

  print("step 8: D2H reference clock")
  time_ref_1d = np.zeros(height*width*3, np.uint32)
  simulator.memcpy_d2h(time_ref_1d, symbol_time_ref, 0, 0, width, height, 3,\
    streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
  time_ref_hwl = oned_to_hwl_colmajor(height, width, 3, time_ref_1d, np.uint16)

  print("step 9: D2H x[zDim]")
  xf_wse_1d = np.zeros(height*width*zDim, np.float32)
  simulator.memcpy_d2h(xf_wse_1d, symbol_x, 0, 0, width, height, zDim,\
    streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)

  simulator.stop()

  if args.cmaddr is None:
    # move simulation log and core dump to the given folder
    dst_log = Path(f"{dirname}/sim.log")
    src_log = Path("sim.log")
    if src_log.exists():
      shutil.move(src_log, dst_log)

    dst_trace = Path(f"{dirname}/simfab_traces")
    src_trace = Path("simfab_traces")
    if dst_trace.exists():
      shutil.rmtree(dst_trace)
    if src_trace.exists():
      shutil.move(src_trace, dst_trace)

  timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl)

  nrm2_xf = np.linalg.norm(xf_wse_1d.ravel(), 2)
  print(f"|xf|_2 = {nrm2_xf}")

  z = xf_1d.ravel() - xf_wse_1d.ravel()
  nrm_z = np.linalg.norm(z, np.inf)
  print(f"|xf_ref - xf_wse| = {nrm_z}")
  np.testing.assert_allclose(xf_1d.ravel(), xf_wse_1d.ravel(), 1.e-5)
  print("\nSUCCESS!")

  vals, vecs = eigs(A_csr, k=1, which='SM')
  min_eig = abs(vals[0])
  vals, vecs = eigs(A_csr, k=1, which='LM')
  max_eig = abs(vals[0])
  print(f"min(eig) = {min_eig}")
  print(f"max(eig) = {max_eig}")
  print(f"cond(A) = {max_eig/min_eig}")

  if 0:
    debug_mod = debug_util(dirname, cmaddr=args.cmaddr)
    print(f"=== dump rho with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
    for py in range(height):
      for px in range(width):
        t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'rho', np.float32)
        print(f"(py, px) = {py, px}, rho_ij = {t}")
  if 0:
    print(f"=== dump k with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
    for py in range(height):
      for px in range(width):
        t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'k', np.int16)
        print(f"(py, px) = {py, px}, k_ij = {t}")



if __name__ == "__main__":
  main()